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9.) Evaluation of irertia terms.

It was found that the calculated Reynolds number for
separation is 16 times to small compared with the experi-
mental evidence. This discrepancy was attributed to the |
linearization of the inertia terms in Navier-Stokes equations
Therefore an estimation of the inertia terms is of interest.

In (24) the first term represents the linearized inertia
forces, the second and third one on the left side the second
order inertia forces. For an estimation the surface integral
of (24) over the cross section of the gap will be considered

JUay dF « [ty aw - y/aw)dF « v [raay'dF

Regarding (33) one sees that the integrals of the first order
inertia term and of the viscosity term are zero. The surface

integral of the second order inertia forces wili be transfor-
med by Greens theorem into a boundary integral:

(Vo - o) dF = § (v, &y 3% )

Only the outer boundary with radius r, contributes as at the
inner boundary v;- o, yﬁn 0 . Introducing (33) and the direc-
tion of n equal to that of r one obtalns when regarding the
boundary ccnditicons {44,47)




The following valuas were computed for the two numerical

examples
K = 3. 10° ’ g" = 196,60595 vf
K = 100, & = 1972,6036 U*

Introducing the experimental values Ty = 25 mm, r, = 21 mm,
e = | mm one obtains for K = 3 . 1o3 as integral value

- 35 0'2. The second order inertia terms show to be ne-
gativo 80 that the linearized inertia term seems to be too
large. If this is so a too amall Reynolds number is calcuv-
lated. This can be shown by introducing the dimensionless
radius 7 and the corresponding stream function y . Then
from (22) '

\?yé‘?t— Yo oWy = T%V’!4A‘;

is obtainéd. An average value of the Reynolds number

ru*

is given by

_ [naay dF
$ (¥, Yna — Pa V) 45

Re

It 18 indeed too small if the average value of the dimen-
sionless inertia forces is too large.

An other procedure for the control of inertia forces is
to introduce in advance smaller inertia forces than in the
preceeding zalezilation. This is done by dividing the gap in
two annulll. In the inner one inertia forces are neglected
as they are anyhow zero at the inner boundary. In the outer
annuflus the linearized inertia forces are considered. The
width of the two annufi was assumed as equal. The radius of
the interface will be denoted with r' and the corresponding

variable y with y'.




The solution for the inner annullus was already
presented in chapter (5). It will now be written

v, = efcrecr?ecyt ecrinr]cose

v e[byr s br?s br? s brinr]sing ! (54

index i refers to the inner annulus, index a to the outer
annulus. With r is denoted the dimensionless radius r/ro.

" The boundary conditions are

at r'= 1, Vv'o ’ \r’y'o (55

at r=1pr',y=y', Vi ® Yra v Vi * Yye | (56

For the outer annulus one has the solution (33) and the
condition (46) for the outer boundary.

Furthermore there must exist a steady connection of
the velocities on both sides of the interface, This gives
the additional boundary conditions at r = r', y = y' resp.

ra=r',y=y'; Vea * Pl Veva " Vori (57

Each boundary condition gives two equations one for the
sine and one for the cosine term of (54). Therefore the
boundary conditions lead to 16 equations by which the 8
constants c,, Cos Cxs Cys b,, by, b}’ by, of (54) and the
8 constants a_, a,, a5, By, Moy My, My, My of (s) should
be determined. However two of these equations show to be
linearily dependent. These equations dre Yova * VYeri at
r=r', y=y' resp. They are linear combinations of (57).

As the purpose of this calculation is merely to analyse
the influence of too large inertia terms on the Reynolds
number for separation a further boundary condition may be




introduced which also reduces the inertia forces. This

is the condition that at the interface the second radial
derivatives of the tangential velocity components on each

side of the interface coincide. This gives two more equations,
one for the sine and one for the cosine terms.

Yevva * ‘?vvri (58

With this additional condition which has no physical

meaning the linear dependency is removed. It was already
pointed out that a lack of physical meaning 1is here of no
importance as in this calculation only the effect of smaller
inertia terms than in the previous calculation should be
investigated.

Introducing (54) and (33) into the conditions (55, 56,
57, 58, U47) one obtains the following boundary conditions

4) v« 4

- ¢ +3¢ sC = 0. b -b o+ 3b +b, =0

C, + ¢ &+ ¢ - 0 b, + b, + b . 0 \>7
2) rsv [ ys Yy

¢, - 7t + 3Tt . oc(iny 1) = ey

b, - byt +3byr?t « by(lny + 1) = g'(y)

c, » vt vt i ciny’ e -%-}-’1-4-)-
e .

2¢,v'"% & beyv e c,r“; « £ (y')
2b,v'3 + 6by + by =g (y)
~6c, vt v 6c, -l . f= yH
-6 byt s 6b, - B! = g" (y)

3) y- 6,
see (47)




The condition for separation

{%(llo u) = 0

at r = 1 leads with (51a, 54) to the expression

v 4
2 &2

s U® - €{[2¢,+ bcys ¢, Jcos ¢ o [2b, + 6B, lb,],;n‘,} «0

Numerical calculations were carried through for

With these quantities the 16 constants were evaluated from
(59, 60, 47). The following results were obtained.
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Now from (61) the excentricity e with which separa-
tion occurs can be determined. Introducing the two angles
Y - O°. 90° one obtains

¢ =0°:  5,A5855 - € - 20,84991 = O
g = 0,26161, e = 5,35021 mm
p =9°:  5,85455 - £ . 20,23889 = 0
£ = - 0,26951, ¢ = 5.61377 mm

In the preceeding calculntion with linearizod inertia
terms covering the whole gap it was found e = tor the
same values of J/, and K = 3 ° 102 or Re = 1,3 1o3 resp.
The experiments had shown that the Reynolds number for
separation was calculated 16 times toc small}. Now with
reduced inertia terms that means with the assumption that
only in the outer half of the gap inertia forces are ac-
ting e = 5,61477 mm 1s found, which result indeed corres-
ponds more closely to the experiments. A direct coapari-
son is not possible as experiments were performed only
with a maximum excentricity e = 3,5 mz corresponding to
& = 0,167. Por separation the experiments gave Re =
2,1 - 1o4 or K = 4,8 . 1o4 resp. This quantity relating
to @ = 3,5 mm must indeed be larger than for e = 5,6 mm.
This 1s in agreement with the calculation which gave
¢ = 5,6 mm for K= 3 - 103 or Re = 1,3 . 103 resp. One
sees that the order of magnitude of experimental and cal-
oulated Reynolds numbers now agrees.




Table II

Estimation of inertia terms.

First calculation

K = 3.10% _ Re = 1,3.10°, e = 1,01392 mm;

Second calculation

K = 3.10%; Re = 1,3.10°, e = 5,45021 mm;
'Expcriment |
4 4

K=5,10; Re = 2,1,10 ; e = 1 mm;

€ = 0,048668
€ = 0,26161

€ = 0,048

This shows clearly that the linearization causes the
discrepancy of calculated and measured Reynolds numbers

for separation. By omitting partly the inertia terms in

the second calculation indeed a satisfactory agreement

with experiments 1s obtained.




10.) Stability proof cf Couette flow with rezard to per-
turbation waves.

In the preceeding theoretical investigation it was
found that separation of the Couette flow may occur
when the flow is bounded by excentric cylinders the
outer rotating the inner at rest. The close agreement
of the calculated Reynolds number for separation and
the exnerimentally determined Reynolds number for the
first occurance of perturbations confirms that with ex-
centric cylinders the generation of turbulence is a se-
paration effect. It may be stated that the same effect mey
be due to vibrations, as separation 1is affected by iner-
tia forces independently of the means by whish they are
created i.e. by stationary or nonstationary motion. Those
circumstances may explain the generation of turbulence
in earlier experiments [1,2,},4]. In fact the review of
the earlier experimental work does not exclude the con-
Jecture that'excentricities and viktrations could have
been present. This could mean that in the absence of
excentricities and vibrations a Couette flow with ro-
tating outer cylinder and the inner cylinder at rest
should be stable. But this conclusion would not be com-
plete 1if there could not be given a direct proof of the
stability of such a "pure" Couette flow. By eliminating
excentricities and vibrations as far as possible sta-
bility was found to the highest speeds of revolutions
experimentally obtainable [5]. The theoretical treat-
ment applying the method of small perturbation waves
on the complete Navier Stokes aquations leads to Bessel
functions o, complex order as eigenfunctions [5]. As
the zeros of these functions are nct known the eigen-
values cannot be determined in this way. Therefore the
solution was derived as a series expansion. This expan-
sion contains few numerical errors wnich fortunately
showed to be of subordinate influence on the numerical
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results. In eq.20 of [5] the coefficients - 16.67;
33.33 have to be replaced by 5.56; 22.22 and in eq. 21
of [5] the 2 terms are positive. The corrected equa-
tions will be given with the following Botations. The
fraction of the width d of the gap and the radius r
of the outer cylinder .18 denoted by §, |

6 =%

the wave length of the perturbation by ] and the number
of waves along the circumference by k ‘

k,-a—-xn'r’

A

the ratio of the propagation velocity c¢ of the pertur-
bation and the velocity V of the outer cylinder by g R

E- ?r+i§i -‘\%'

where £, , §; are the real and imaginary part of § ,
the Reynolds number by R ,

vr

R = —

14

Finally the abbreviations

q =k R &%E
r-kR(1~gP)

sakn[gr- 37%.‘_57]

are intrcduced.




With this the real and the imagninary part of the se-
ries expansion are

83,3 (148) + [80,5 + 11,7 k2 + 5,5 q ] 42 (54
+ [17.7 + 22,2 k% + 5,5 g)¢°
+ [- 19,7918 - 43,05 k° - 2,083 q - 0,69% (k' + k%q)
- 0,347Z (q® - p?) ] 8"
+ [~ 2.8305 - 4,18 k% + 2,7 q + 3,473 T
+ 2,083 kaq + 0,1157%o q2 - 0,578703 p° - o,4%39 ps]&5 = 0

and

5,5 + 22,2 5 - (25,4839 + 2,378 k2) §2
+ (11,34755 + 6,71355 k2)s°
- (1,857 + 3,00925 k%)s" (55
+ g,[- 1,7 - 5,56+ (9,72 + 1,38 k2)§°
- (7,638 + 4,86770 k2)s° + (2,7 + 2,083 kz)éu]
- q8° [ 1,857 - 2,083 5 + 0,69% §°
+8 (- 1,38+ 1,157% § - 0,23788 62)]-

There exists stability when §;<:O, Q<0 resp. For diffe-
rent width of the gap and different wave numbers k the
following stability regions for'g, were calculated. It
has to be mentioned that g,:>1 has no physical sense.



Table IIX

Regions of g, in which é,- < 0

‘ K2 grnin grmx
0,01 1 0,51722 1,28571
100 0,51586 :
{o00 0,50339
10000 0:36229 "
100000 o "
0,1 1 0,64988 1,29412
100 0,55012 "
1000 0 "
10000 0 "
0,2 1 0,76593 1,25391
100 0,47515 "
1000 0 "
10000 0 "
100 » 0:588g7 {31
1000 0 »
10000 0 "
0,6 1 0,97159 1,09525
100 0,85994 "
Y000 0,81647 "
10000 0,81026 "
oo 0,8035%4 "
038 1 039965“ 1’° O
100 0,97705 ‘ 2 >
1000 0)97}99 "
10000 0,97363 "
oo 0,97359 "
0.9 1 0)99957 1300866
100 , 0,99362 "
1000 0,99295 "
10000 0,99288 "

oo 0,99287 "

One sees that the larger the width of the gap the smaller
the stability region of &, which in the limiting case

§ =1 seems to converge to Q, = 1. It will be shown later
that this is in agreement with the exact solution, which




will be derived for § =~ 1. It will be shown that ?,’-’
is the only possible propagation velocity. Therefore a
larger or smaller region of g, does not indicate the re-
liability of this calculation.

11.) Stability of a fluid rotating as rigid body

As the series expansion does not give a complete stabi-
lity proof it is of interest to search for special cases in
which an exact solution of the stablility problem is possible,
‘As will be shown this 1is true in the limiting case of a
centric inner cylinder with zero radius. Here the fluid

is rotating as rigid body.

Denoting the radius of the outer cylindur by r , the
rotatory speed of this cylinder by V, the velocity of the
liquid by U and introducing the radial coordinate y with
the origin at the outer cylinder one has |

14
U =¥ (r-y) (56

If y denotes the circumferential angle the circumferential
coordinate

X = ry (57

is introduced.

The stability will be investigated with the theory of
small perturbation waves. As perturbation the well known
expression [10] for the stream function p

i(sx-pt)
yepiyye 7P (58

is introduced, t denoting time, « = 2¥ 3 with A denoting
the wave length. /4 -,B,u'/ﬂ; is complex. The real part /3,
is the natural frequency of the perturbation. The imagi-

nary part ﬁy determines damping (8,¢0 ) cr sxitation
(pp 0). A«Omcans stabllity. Then the complex propagation



velocity of the perturbance

c = £ (59

[

will be introduced. As mentioned before the number of per-
turbaticn waves around the circumference is ‘

K = &r (60

Introducing the perturbation (58) into Navier-Stokes
equations one obtains [11] by linearization

[0 (L tp - 25 JU-TLe) s o (-u"s 55 + i) |
(61

*p- 2L Pl - AL xr-x
- (o R R~ = LR =7 LR Al
. e 2.
r(r-yf r(r-y) r']
This expression contains the complete frictional terms.
An exact solution of 2q.(61) will be deduced .
Introducing (56) ons sees that the f-term on the left
hand side vanishes. Then introducing the operator [5]
Loy = o™ 5- (5 )y (62
one obtains
CyY - o | g 2 r ]
(U-LLe)L = - (FLU-FL-«5 L) (63

Thus the fourth order equation (61) is reduzed to the two
second order equations (62,63).

Introducing the dimensionless quantities

"%; R-vy!l'g!—vc—z;%3!’4i". (6“

in (62,63) one obtains




Liy = ?"-,-;’%-k’—f— | (65

(1-qf
e foafl-ti-m)L]- [B e ci-ntew-0]L = 0 (66
" Substituting
2% a (/-q)'l'kR(§~/) | (67

as new independent variable (66) 1s transformed to the
Bessel equation '

i

ZL 2+ (2™ k’)/. =0 (68
with the solution

L=c]cn) * e Hle (69
(65) is transformed by (67) to

Py eay-kip-2L=0 (70
Adding (68,70) one obtains

BL+9)'+2(L+9)-KLre)=0

with the solution

L+yp= c2%+ e,27%




Thus %he complete solution of (61) is

- 1
=G 2%4+ G 2 ~ ‘-':],JZ)"-':HK“)

with constants c1.c2.cj,ch.

The boundaries are y = O, y = r or with (64,67)
z,-J«'xR(g-r) y 2,30

The boundary donditions are

As z‘k, Hk1 are infinite at z = O one has
cy = c2 =0

The boundary conditions at z, yield the homogenous
equations '

X
P =2, -c,]x(z,) =0

al ! d2
—j—} =[xz g Juz)) gt =0

Putting the determinant to zero one obtains

d K-/
["Zk‘zﬁ + K2 ]x}z.llz 0

(71

(72

(13

(74

This expression for the eigenvalues z, can be transformed

with the differential formula for Bessel functions

Aiégfz'Zn

di

(75




to
Fo (2220 | (76

As the Bessel function J of first kind has only real roots
the eigenvalues z, are real. This requires according to

(67)

§.-1-0, §¢<o o (77

where &,, (§; are the real and imaginary parts of § accor-
ding to (64). This means that a perturbation once origina-
ted can only rotate with the angular velocity of the ro-
tating fluid. §; < O means damping. Thus a flow representing
& rigid body rotation i1is stable. This confirms the former
result obtained by series expansion (s. Tq.bchII). It
showed that the iarger the width of the gap the more the
stablility region converges to g, - 1,

The solution z, = O of (76) has to be excluded as
z = 0 represents the inner boundary according to (72).

The exact stabllity proof also can be given 1f a 1li-
quid annullus of the width d is rotating as a rigid body.
The boundary z, is the same as in the preceeding case,

s. (72) but’ z, 1s now not zero. Therefore the constants

CysCp in (71) are now not zero.

The coordinate of the inner boundary 1is

2, an'kR(g-l) (l'-‘;'-) (78

With

-4 o | (79

one has

2, 2«2, (8o




« is real.
Introducing (71) into the two boundary conditions (73)

for each boundary one obtains

- f
e, 2, +¢ 2" -¢ J2r-¢ He(2) = 0
/
- o=/ ’ [
e ke ek -e iz - Hetz) =0
- ' r
c, zlx +c‘ Z‘ K - C, 7K(Z)’ - C‘HK(Z‘) = O

- -K=1 ' v

The condition that the determinant must be zero yields 1if

the Wronski determinant

’ P . ,
]KcmHK'uu ~ JerHetz) = %—2‘— (81

is introduceu

L

- KK g ' 1/ '
(-2)2,"+2, Z,)[]K(z,;H,‘(Z,) - Fut P He2) - f._i (F 20 Hiez) = Foizy) H,:(z,))]
' 1 ’ ’
o2 222 [— zﬁz (Fu(2) Hyt2y)~ FtZD Hrez)) + -g-, (T2 Hy2 - Ficzp H,{(z,))]

- [ BK
XZZ,

By rearranging one obtains

- ’ ' ¢/
22" [- Tz (Hatzp + i, Hutzy)+ Foczp(Hy (20 - i Hy(2,)
¢ [l ’
+ é—(' 7K(Z,)(HK (Z,) + .ZE, Hx(zz)) + é 7«‘31’ (H,’((z') - .;.‘.’ H;:(Z,))]
22,2, [Ptz (Hizp - EHaz)) - Jozp(Hezo+ £ He (2,)

o/ : ’
+ 7 F2) (He(2) - '%H,'(z,)) ARG MERRS o))

_8iK
vz, - 9
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With the differential formulas (75) and

LI (82

dz

which hold for all kinds of Bessel functions this expres-
sion can be transformed to

- . )
z,"z, K[‘H;-/‘lz’ (Z(' () - f, 7}(‘20’) ~ Hsi! Z:’(?x (Zy) *‘;z Zg ( 2.2))]

7
222 [-Hieor BTtz + & Fut2) - M (2 Ftzp - £ Fu2y)]
sik
Ti1, o

-

Here again introducing (75,82) one obtains

K_-k[,,1 !
Z z [HK-I{ZZ’ e A2 = Ha (2D Z(_,(Z:)]

- ' ' ]
*E, 3:[‘Hx+l‘lz’7x-i"z"‘*Hh"/(l’,]‘*’(z«"]-raz‘,:‘ =0

Expressing the Hankel function by J and the Neumann fimc-
tion N one has

zokz;k[/vx-l(zz’ Zwl(z:) - Nx,,(z,)z,_,(z,)]
-K
+2, z;‘[. Nt () Feer(20) + Ny (20 7,,,,(32)] = :?Qz%.,
(4

Introducing (80), multiplying the whole expression by o
and differentiating with respect to « one has ‘

-("T(x-/) (et ) e (20~ Pio OB Dot C2) + 2, (N (2 Fiesy i)~ No ) 7,,'.,(1,))]
+of K[(K # ) (-Nert(ZD Ju-10Z04 Niet B Frri (22) = 2y (Wiga 1 Zg) F- (BN + N (E)) 71;9: (lzl)}
=0




Ld

By rearranging and introducing (75,82) o.e obtains
-K IS -K X ]
z!}/,‘(z,)[--t 7,(,,(2,)-0( Z-"-,(Z,) 4’2,7‘(2,) & Nys)(20+ & Ni-1(2)] =0

As 22# 0 one has the condition

Ni12 Jrcs )20 =t Niey (2)) - oK (83
e (ZPNr-112,) = N (2)) Fn-i (D)

As o 18 real this condition means that the ratios of the

real and the ilmaginary parts of the nominator and denomi-
nator must be equal. This 1s not possible as the nomina-

tor and the denominator are of different degree in the

lowest power of z. Therefore the condition only can be satisfle
with a real independent variable z. This again means sta-
bility. It can be gseen easily that (83) reduces‘u;nﬁ)if

ol tends to zero. Then the Jyx terms vanish and Nx(za)

can be cancelled. What 1s left is (75).




12.) Summary

The preceeding report No. 1 of June 1961 was devoted
to the question how turbulence may be generated in a
Couette flow between excentric cylinders when the outer
one is rotating and the inner cylinder is at rest.

This question arose when recent experiments performed
by the author had shown definitely stability up to considerable
speeds of revolution [5] whilst the earlier experiments
[1,2.}.4] clearly had shown transition. As in the new
experiments excentricities and vibrations were avoided
as far as possible in the former experiments disregar-
ded excentricities and vitrations could have affected
the transition to turbulence. In fact a review of the
earlier experimental work does not exclude thia.conjoc-
ture. It therefore seemed worthwhile to investigate the
generation of turbulence by excentricities and vibra-
tions. Turbulence would occur here as consequence of se-
paration. As separation is coupled with inertia forces
independent of the means by which they are produced it
is sufficient to consider excentricity. Restricting to
small excentricities with regard to the width of the
gap the outer boundary which 1s regarded as excentric can
be replaced by a fictitious centric boundary representing the
mdan of the actual boundary. The rotating outer cylinder
pricduces radial velocities at the fictiticus boundary.
Tﬁororore nonhomogenous boundary conditions exist ex-
cluding an eigenwlue problem and necessitating the cal-
culation of the veloclity profiles. Doing thia it was
found that sepdration can occur.

However the calculated Reynolds numbers for separation
are too small compared with experimental observations,
Thé discrepancy showed to be too large as to be explained
by the earlier occuring instability at the inflection
point of the velocity profile. The insufficiency of a

o . e s - i 7 .- -

L_—_______
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linear approximation seemed to be more likely. In fact
the mean velocity tends to zero at the inner boundary

so that linearization here 18 not anymore Jjustified. Ob-
viously linearization implies to large inertia forces.
Therefore in this report a new calculation was performed
with inertia forces which should be smaller than the ac-
tual inertia forces. This was done by neglecting the
inertia forces in the inner half of the annullus and
linearizing the inertia faes in the outer half. Now

a satisfactory agreement with experiments was obtained.

It may be mentioned that linearized boundary calcu-
lations along corrugated walls had shown a sensitive
influence of the corrugation on transition [7] in
agreement with the result obtained here that the calcu-
lated Reynolds number for separation 1s too small. Now
as a comparison with experiments is available this sen-
sitiveness shows to be more attributed to the insuffi-
cient linearization than to physical effects.

Having demonstrated the generation of *urbulence by
an excentricity and herewith as mentioned before also
by vibrations a straight forward proof of the stability
of the Couette flow with rotating outer cylinder on the
basis of propagating perturbation waves is still of in-
terest. The exact solution could be derived [5] . How-
ever the eigenfunctions are Bessel functions of complex
order which are not yet enough explored. Thus a series
expansion had to be introduced which was recalculated
in this report. It shows at least stability regions.
However in a special case an exact stablility proof can
be given. It is the rotation of a fluid as rigid body.
This is also the 1limiting case of the centric Couette
flow regarded here with vanishing radius of the inner
cylinder. The eigenfurtions are Bessel functions of
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first kind the zeros of which are the eigenvalues. As
they are real the perturbation waves are damped and ro-
tate with the body. Damping means stability. The exact
stabllity proof 1is also given for a liquid annullus ro~
tating as a rigid body. Also in this case the eigenva-
lues turn out to be real sc that stability exists.
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